Indian Statistical Institute, Bangalore Centre

B.Math (Hons.) I Year, First Semester Mid-Sem Examination Analysis I Time: 150 Minutes September 29, 2010 Instructor: C.R.E.Raja

Answer any five and each question is worth 8 marks. Total Mark is 40.

- 1. Let (x_n) be a sequence of real numbers.
 - (a) Show that (x_n) converges implies (x_n) is bounded.
 - (b) Let $x \in \mathbb{R}$. Show that $x_n \to x$ iff $\liminf x_n = x = \limsup x_n$.
- 2. (a) Say true or false: every bounded sequence (x_n) has a subsequence (x_{k_n}) such that $x_{k_n} \to \limsup x_n \in \mathbb{R}$.

(b) Prove that every bounded sequence has a convergent subsequence.

(c) Suppose (a_n) and (b_n) are bounded sequences in \mathbb{R} . Then prove that (a_n+b_n) is a bounded sequence and $\limsup (a_n+b_n) \leq \limsup a_n + \limsup b_n$.

- 3. (a) If |x| < 1 and q ∈ IR, show that ∑n^qxⁿ converges.
 (b) Prove that n^{1/n} → 1 and use it to show that ∑a_n converges where a_n = (n^{1/n} 1)ⁿ.
- 4. Let $\sum a_n$ converge absolutely. Then show that $\sum a_n$ converges and every rearrangement $\sum a_{k_n}$ also converges to $\sum a_n$. Show also that any rearrangement $\sum a_{k_n}$ converges absolutely and $\sum |a_n| = \sum |a_{k_n}|$.
- 5. (a)Let A be a non-empty subset of the real line IR and define f: IR → IR by f(x) = inf_{a∈A} |x a|, x ∈ IR. Show that f is continuous on IR.
 (b) Let f be a continuous function on IR and x ∈ IR. Suppose f(x) ≠ 0. Show that there are δ, η > 0 such that |f(r)| > η for all r ∈ (x-δ, x+δ).
 (c) Let f and g be continuous functions on IR and x ∈ IR. Suppose f(x) ≠ g(x). Show that there is a δ > 0, such that f(r) ≠ g(r) for all r ∈ (x δ, x + δ).
- 6. (a) If f: [0,1] → [0,1] is a continuous function, then prove that there is a x ∈ [0,1] such that f(x) = x.
 (b) If f: [0,1] → [0,2] is a continuous function, then prove that there

(b) If $f: [0, 1] \to [0, 2]$ is a continuous function, then prove that there is a $x \in [0, 1]$ such that f(x) = 2 - 2x.

7. Let $f: I \to \mathbb{R}$ be an uniformly continuous function and (x_n) be a sequence in I.

(a) If (x_n) is Cauchy, show that $(f(x_n))$ is Cauchy.

(b) If (x_n) and (y_n) are sequences in I such that $x_n \to x, y_n \to x$ for some $x \in \mathbb{R}$, then show that $\lim f(x_n) = \lim f(y_n)$.